www.vorwissen.de
Ein Projekt von vorhilfe.de
Das gesammelte Wissen der Vorhilfe
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation and Approximation" - Restgliedabschätzung
Restgliedabschätzung < Interpolation and Approximation < < University < Maths <
View: [ threaded ] | ^ Forum "Interpolation und Approximation"  | ^^ all forums  | ^ Tree of Forums  | materials

Restgliedabschätzung: \xi bestimmen
Status: (Question) answered Status 
Date: 14:49 So 16/07/2006
Author: DAB268

Hallo.

Ich vertsehe die Restgliedabschätzung der Numerik nicht ganz.
Aus dem Anhang Aufgabe 1 soll hierfür mal als Beispiel dienen:

Die Formel der Restgliedabschätzung ist ja [mm] $|p_n(x)-f(x)|= \max_{\xi\in\left[x_o,x_n\right]}\bruch{|f^{(n+1)}(\xi)|}{(n+1)!}\cdot|\omega_n|$ [/mm] mit  [mm] $\omega_n=(x-x_0)\cdot\hdots\cdot(x-x_n)$ [/mm]

Soweit so gut. Was jetzt aber mein Problem ist aber, wie ich auf das [mm] \xi [/mm] komme. Kann mir dies evtl. jemand mal erklären.

[a]Aufgabe 1

MfG
DAB268

attachments:
Attachment # 1 (Type: pdf) [nicht öffentlich]
        
Bezug
Restgliedabschätzung: Antwort
Status: (Answer) finished Status 
Date: 16:47 So 16/07/2006
Author: Mathematiker84

Hallo,

die e-Funktion ist monoton steigend, deshalb nimmst du als [mm] \xi [/mm] 2, also den größten Wert von -1, 0, 1, 2.

Bezug
                
Bezug
Restgliedabschätzung: Frage (beantwortet)
Status: (Question) answered Status 
Date: 17:03 So 16/07/2006
Author: DAB268


> Hallo,
>  
> die e-Funktion ist monoton steigend, deshalb nimmst du als
> [mm]\xi[/mm] 2, also den größten Wert von -1, 0, 1, 2.

also kann man im Grunde sagen, man nimmt den Knotenwert als [mm] \xi, [/mm] für den [mm] f(x_i) [/mm] maximal wird?

Bezug
                        
Bezug
Restgliedabschätzung: Genau
Status: (Answer) finished Status 
Date: 17:19 So 16/07/2006
Author: Tequila

Richtig!
du suchst den Punkt wo das xi so gewählt ist, das du den maximal größten Funktionswert bekommst.
dieser Funktionswert kann aber auch zwischen x und x0 liegen
hätte auch in dem Fall z.B. 1,5 oder so sein können.

Muss nur im Intervall von x und x0 (x-Knoten) liegen!

Bezug
View: [ threaded ] | ^ Forum "Interpolation und Approximation"  | ^^ all forums  | ^ Tree of Forums  | materials


^ Seitenanfang ^
www.vorwissen.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]